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Abstract

We present the ideal matching kernel and PSF solutions for Gaussian input PSFs in
the ZOGY imagematching, noise decorrelation and subtractionmethod. We discuss
sources of numerical noise in Fourier-space calculations that can lead to spatially
badly bound image artifacts in the difference images. We briefly study the connec-
tion between the Alard-Lupton PSFmatching with the decorrelation afterburner and
the ZOGY subtraction methods.
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The ZOGY image differencing matching kernel and PSF
solutions and their practical implementation issues

1 The derivation of the ZOGY difference image

In this document, we study some practical issues of performing the ZOGY subtraction and its
relation to the Alard–Lupton (AL) method (Alard & Lupton, 1998) combined with the decorre-
lation afterburner. We assume that the reader is somewhat familiar with the Zackay–Ofek–
Gal-Yam (ZOGY) algorithm deduction steps in the ZOGY paper(Zackay et al., 2016) Appendix
A.

We recall four key ideas behind the ZOGY subtraction method: a) Given an image with uncor-
related, homoscedastic pixel noise (the noise variance in each pixel is the same value all over
the image), its convolution with an arbitrary kernel leads to noise correlation between the re-
sulting pixels. However, in frequency space, the frequencies remain independent (as random
variables), only the amplitude (variance) of their noise content changes. b) The independent
frequency space pixels are complex Gaussian random variables. For a signal detection pur-
pose, similar log probability expressions can be written as for the real-valued random vari-
ables (image pixels). c) Log probability can be calculated as a sum over all the independent
frequencies, weighting the squared absolute difference at each frequency with its inverse
noise variance. d) The detection statistic in frequency space can be split into two multiplica-
tive terms. In image space, these two terms can be interpreted as a difference image and
its PSF, which produces a per-pixel detection statistic by convolution. The difference image
is constructed in frequency space so that each frequency bin is a (complex) random variable
and has the same variance. This implies that the difference image in image space has uncor-
related (and under the model assumptions), homoscedastic noise in its pixels. The difference
image noise remains uncorrelated despite the PSF matching procedure. We recall the fol-
lowing equations from the ZOGY paper. The new 𝑁 science and the reference 𝑅 images are
modeled as:

𝑅 = 𝐹𝑟𝑇 ⊗ 𝑃𝑟 + 𝜖𝑟 (1)

𝑁 = 𝐹𝑛𝑇 ⊗ 𝑃𝑛 + 𝜖𝑛 (2)

where 𝐹𝑟, 𝐹𝑛 are photometric scaling constants, 𝑇 is the truth image, 𝑃𝑟, 𝑃𝑛 are the image PSFs
and 𝜖𝑟, 𝜖𝑛 are per-pixel Gaussian white noise with homogenous variance in the images.
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The detection statistic of 𝑁 having a different 𝑇 value than 𝑅 at any pixel position can be
written in frequency space as:

̂𝑆 =
𝐹𝑛𝐹 2

𝑟 ̂𝑃𝑛| ̂𝑃𝑟|
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In image space, 𝑆 is called the score or significance image and represents the significance of
a source detection for each pixel. The difference image is defined as:
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(4)

and its PSF:
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so that:
̂𝑆 = 𝐹𝐷�̂� ̂𝑃𝐷 (6)

The difference image (and similarly the score image) can be written as the difference of two
“matched” images as in Equation (7).
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Here ̂𝑐𝑛 and ̂𝑐𝑟 are the matching kernels for the original science and template images. If the
original image PSFs are accurately described by 𝑃𝑟, 𝑃𝑛, then the frequency space multiplica-
tions transform the PSFs of the two images to be identical, 𝑃𝐷, Equation (5). Note that while
we followed the terminology of the ZOGY paper here and referred to the images as science
and reference images, the entire ZOGYmethod is symmetrical to the swapping of the images.
In the following, we may simply denote images with 1 and 2 indices.
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2 Discussion points

We list the following questions that can define the direction of future ZOGY image differencing
code development in the LSST stack.

How does an ideal Gaussian PSF point source look like theoretically in a ZOGY difference im-
age? Discussed in Section 3. In Section 4, we look for answers: What causes the extensive,
oscillating visual patterns in the ZOGY difference image around certain sources and image
features (Section 4.2)? What shall we do with the numerical problems that appear in certain
regions in frequency space and appear as pattern artifacts in image space (Section 4.4)? Shall
we implement a Gaussian PSF approximator that produces the PSF frequency space repre-
sentation directly? Shall we implement a Gaussian PSF width estimation to determine which
input PSF is sharper so that a realistic limiting value can be used at frequencies when both
PSFs (in frequency space) are below a threshold (Section 4.4)? How shall we handle division
by zero scenarios in the ZOGY difference and significance image calculation (Section 4.1)?

In the Appendix, among other smaller topics, we raise the question whether we can use
zero padding for calculating the score image, or shall we use model white noise padding (Ap-
pendix A.7)?

3 The theoretical solution of the ZOGY matching kernel and dif-
ference image PSF

In this section, we derive numerical solutions for pure Gaussian PSFs. The inverse Fourier
transforms of the ZOGY matching kernel or difference image PSF expressions are not ex-
pressible in closed symbolic forms, even in this case. We perform numerical integration of
the functions.

In Figure 1, we show 1D slices of the 2D solutions of 𝑃𝑑 , 𝑐1 and 𝑐2. Noise variances and pho-
tometric scaling factors are unity for simplicity. As the input PSFs are pure Gaussians, i.e.
symmetric, real value functions, their Fourier transforms are also real and symmetric.1 Note
the different behavior of the two matching kernels towards high frequencies. The matching
kernel of the narrower PSF image 𝑐1 goes to zero, while the other one goes to unity here.

1Detailed calculation notebooks are part of DM-26087.
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Figure 1: 1D slice along the x-axis in frequency space of the matching kernels and the PSF
of the ZOGY difference image. The Fourier space representation of the input PSFs is also
shown. The two PSFs have widths of 𝜎1 = 1, 𝜎2 = 2 in image space, i.e. PSF1 is originally the
narrower but the Fourier transformation swaps this relation.
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While the graphs of 𝑐1 and 𝑐2 resemble to Gaussians, they are not anymore, and we must use
numerical integration to calculate their inverse Fourier transform. Their image space values
for points along the x-axis is shown in Figures 3 and 4.
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Figure 2: 1D slice along the x-axis in image space of the PSF of the ZOGY difference image
with the input image PSFs.

In Figure 2, the PSF of the ZOGY difference image is shown. It is close to the wider input PSF,
but strictly it’s not a Gaussian, it has a negative overshoot, about 1% of its peak value. This
means that in an ideal case, signals in a ZOGY difference image are expected to have small
negative rings around their positive peaks.

For the narrower PSF input image, the matched PSF is created by convolution with the match-
ing kernel 𝑐1, shown in Figure 3. This matching kernel is similar to usual Gaussian blurring but
slightly narrower and has a negative tail itself.

For the wider image, thematching kernel 𝑐2 is an identity Dirac delta kernel minus a Gaussian-
like correction (Figure 4). The Dirac delta is the inverse transform of the non-zero constant
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Figure 3: 1D slice along the x-axis in image space of thematching kernel for the narrower PSF
image. The matching kernel is a Gaussian-like curve that has a small oscillating correction in
the tails.
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Figure 4: 1D slice along the x-axis in image space of the matching kernel for the wider PSF
image. The matching kernel is the sum of a Dirac delta minus a Gaussian-like curve.
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level of 𝑐2 in Figure 1 that must be subtracted for the numerical integration to converge. The
Dirac delta peak is manually added to the result in Figure 4.

Note that in case of identical PSFs, both 𝑐1 and 𝑐2 become constant in Figure 1 which corre-
spond to Dirac deltas in image space. I.e. the matching operation is naturally reduced to the
identity operation if the two PSFs are already identical.
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4 The FFT calculated matching kernel of the ZOGY difference im-
age

In practice, the ZOGY subtraction is implemented by Fast Fourier Transforms (FFT). In this and
the following sections, we study practical numerical aspects of this approach.

In Figure 5, we show typical patterns that appear around features that do not subtract well.
These sources are present in all visits in the HiTS2015 data AL image difference processings
and in some visits they produce different artifacts in the AL subtraction as well; however, AL
artifacts are spatially more localized to the source than in the ZOGY case. The ZOGY patterns
can also appear in the vicinity of masked regions, cosmic rays, or close to the image edges.

Figure 5: High frequency artifacts in the ZOGY difference image (left) around bright sources
that are present in all visits in the AL processing as well. In the same visit, the AL subtraction
(right) has less pronounced visual imperfections.

4.1 Zero values of the PSF

In Equation (4), �̂� is not defined at frequencies where both image PSFs are zero. Indeed,
according to the image models (Equation (2)), at these frequencies, the input images do not
carry any information about the true image. They consist of pure noise. In accordance with
this, these frequencies have zero contribution to ̂𝑆.

9



The ZOGY image differencing matching kernel and PSF solutions and their practical implementation issues | DMTN-179 | Latest
Revision 2021-03-10

We cannot allow zero division in our calculations anyway, thus we need to have a workaround
for pixels where the denominator in Equations (3) and (4) are zero. We define �̂� at these
frequencies as the straightforward subtraction of the two images with the same scaling to
keep the variance constant at all frequencies. Of course, ̂𝑆 = 0 at these pixels. This is currently
implemented in the code stack.

4.2 Matching kernel limit values in frequency space
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Figure 6: FFT calculatedmatching kernel for twoGaussian PSFs, here for thewider PSF image.
This is a Fourier space image with low frequencies at the corners. In this calculation 𝜎1 = 3.3,
𝜎2 = 2.2 PSFs were generated in a 31x31 size image, that were zero padded to 1024x1024
image size before FFT. Per pixel noise variance is 100 for both images, photometric scalings
are unity. All values are real due to symmetry in the inputs.

We saw in the theoretical solution section, that in case of Gaussian PSF-s, the matching ker-
nels in frequency space have tails converging to different limit values. The limit values are
either zero or a non-zero constant depending on whether the matching kernel belongs to the
narrower or wider input PSF image, respectively.
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Figure 7: FFT calculated matching kernel for the narrower PSF image. This is a Fourier space
image with low frequencies at the corners. All values are real due to symmetry in the inputs.
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In Figures 6 and 7, ̂𝑐1, ̂𝑐2 are calculated from two 31x31 pixel size Gaussian PSFs that were
zero padded for a 1024x1024 image size, with 𝜎1 = 3.3, 𝜎2 = 2.2.2 All numbers are real in
this case. The shown frequency space images are in their natural FFT orientation with zero
frequencies at the corners and highest frequencies in the centers. Starting from the corners,
both solutions follow our expectations, converging either down to zero or to their expected
non zero constant (1/𝜎pixelnoise ) plateau. The trend breaks for both kernels in high frequency
regions however, and high value noise appears.

̂𝑐1 ∼ 1

√1 + (
̂𝑃1
̂𝑃2 )

2
(8)

The matching kernel limit values depend on whether ̂𝑃1/ ̂𝑃2 is converging to zero or diverges
as it can be seen in Equation (8). Once we reach the point where the Gaussian tails are dom-
inated by noises3, the convergence properties of these fractions become lost and the calcu-
lated matching kernel values significantly deviate from their expected limit values.

4.3 Patterns in image space

What does this mean for our calculated matching kernels back in image space?

In Figure 8, we show 𝑐1 transformed and re-centered back to image space (but still in its fully
padded image size). The purple structure indicates that there is a sign oscillation pattern all
across padded size image.

We can see that in the direction of the two axes, there are definite purplish patterns. The pur-
ple color on this red-blue color scale shows a sign oscillation that can be verified in zoomed-in
versions of the figure. These patterns do not fade away in the direction of the axes from the
center, indicating that these oscillating sign values have roughly the same order of magnitude
absolute values. The original PSF size 31x31 cannot be clearly identified any more in the im-
age either. We note that the appearance of these patterns is independent of the padding size.
In Figure 9 𝑃𝑑 is shown, calculated by Equation (5). We also show the PSF of 𝑆 in Figure 10.
The PSF of the score image shows how a Dirac delta signal (in the truth image) appears in 𝑆,
though in source detection, only the actual pixel values matter in 𝑆, the shape of the PSF does

2Detailed calculation notebooks are part of DM-26941.
3See Appendix A.2
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Figure 8: Two Gaussian PSFs with spatial widths of 𝜎𝑁 = 3.3 𝜎𝑅 = 2.2 pixels. 𝑐1, the ZOGY
matching convolution in image space of the new (𝑁 ) image. The purple pattern is an indica-
tion of sign oscillation all over the image.
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Figure 9: Two Gaussian PSFs with spatial widths of 𝜎𝑁 = 3.3 𝜎𝑅 = 2.2. 𝑃𝑑 , the PSF of the zogy
difference image.

14



The ZOGY image differencing matching kernel and PSF solutions and their practical implementation issues | DMTN-179 | Latest
Revision 2021-03-10

not.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Ps

10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

0
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1

Figure 10: Two Gaussian PSFs with spatial widths of 𝜎𝑁 = 3.3 𝜎𝑅 = 2.2 𝑃𝑠, the PSF of the score
image.

𝑃𝑑 and 𝑃𝑠 have much cleaner images, contained in size in image space, and close to our the-
oretical expectations. ( ̂𝑃𝑠 ∼ ̂𝑃𝑑 ̂𝑃𝑑 ).

Recall that while we expressed 𝑃𝑑 in Equation (5) as the function of the input PSFs, in a differ-
ence image this is the result of the convolution of the images with the matching kernels. The
high frequency noise in the matching kernel is not disturbing, so long the image follows the
model PSF assumption and has approximately Gaussian PSF features that suppress high fre-
quencies. If there are edges, or signals with high frequency components in the input images,
the noisy high frequency features of the matching kernel becomes visible in the difference
image. Our current understanding is that the deviation of the image PSF from the model as-
sumption and the numerical noise in the matching kernels together cause the visible artifacts
in the difference images produced by the code stack. This conclusion is supported by tests
on simulated images that have sources only with perfect Gaussian PSFs. In these cases, no
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visual artifacts can be seen.

4.4 Workaround for artifact suppression

We propose the following workarounds for the difference image artifact problem:

• In a Gaussian PSF approximation, we can directly create the PSF in the padded, full-size
frequency space, avoiding the zero padding of a small image then the FFT operation.
However, this approach restricts our input kernels strictly to Gaussians.

• In amore generic approach, we can still use the padded, FFT-d detected PSFs of the input
images. Using a radius approximation, we can determine which input PSF is the wider
one in a Gaussian approximation. Thenwe can introduce a configurable threshold in fre-
quency space and pixels in thematching kernels can be replacedwith their Gaussian limit
values wherever the input PSFs go below the threshold (in absolute value, in frequency
space).

• As a third option, we should recall, that the noise artifacts appear only in the difference
image. In the score image, these are automatically suppressed by further convolution
with 𝑃𝑑 . We can choose to use the score image only directly for detection significance.

We repeated the above exercise by generating the Gaussian PSFs directly in frequency space
and performed exactly the same matching kernel and 𝑃𝑑 calculations. These results can be
seen in Figures 11 to 13. These solutions fully satisfy the theoretical limit values and their
image space counterparts are free from any noisy patterns.
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Figure 11: The matching kernels for two Gaussian PSFs in frequency space. In this calcula-
tion, PSFs were directly generated in an 1024x1024 frequency space image corresponding
to image space 𝜎1 = 3.3, 𝜎2 = 2.2 widths. Per pixel noise variance is 100 for both images,
photometric scalings are unity.
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Figure 12: The matching kernels inverse FFT-d into image space, re-centered and zoomed in
for details.

18



The ZOGY image differencing matching kernel and PSF solutions and their practical implementation issues | DMTN-179 | Latest
Revision 2021-03-10

480 500 520 540 560

480

500

520

540

560
Pd (origin at center) same scale as c1, c2

10 2

10 3

10 4

10 5

10 6

0
10 6

10 5

10 4

10 3

10 2

Figure 13: The difference image PSF inverse FFT-d into image space, re-centered and zoomed
in for details.
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5 Variance plane calculation of the difference image

While the ZOGY image model does not strictly allow for different per-pixel noise values (its
noise model assumes homogeneous variance noise across all pixels), from the Equation (7)
form of the difference image, we can propagate the different pixel variance information in the
variance planes into the difference image. To do this, we notice that if we do convolution on
an image of independent noise then, in image space, the variance plane should be convolved
by the square of the convolution kernel. This is the well-known square addition of variances
of independent random variables.4

We’d like to emphasize that this step cannot be applied to an image with already correlated
noise; the square addition of pixel noise in the variance plane do not account for the covari-
ance terms and would result in underestimation of the pixel variance. Notably, the effect of
a noise decorrelation (whitening) kernel on an already convolved image cannot be applied
to the variance plane based on the square addition rule as it would lower the variance fur-
ther instead of reverting it to the uncorrelated level. In accordance with this, the image space
square operation is not distributive with respect to convolution in general; the square of the
convolution of two kernels is not the same as the convolution of the squared kernels, and we
should always perform the former.

To calculate the variance plane of the difference image, we should calculate 𝑐𝑛, 𝑐𝑟 in Equa-
tion (7), transform them back to image space, square them in image space, and convolve the
original images’ variance planes with these squared matching kernels. In practice, this con-
volution is more straightforward to be performed in frequency space again because these
images already share common, full image size dimensions (the dimensions of our ZOGY fre-
quency space calculations).

Equation (6) can also be written similarly to Equation (7) and the variance plane of S can be
calculated this way as well.

6 ZOGY and AL equivalence

The classic AL algorithmmatches the reference image to the new science image by convolving
it with a matching kernel. In frequency space, the matching kernel solution ideally equals to

4See also ZOGY paper eqs. 26-29.
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the quotient of the two image PSFs as shown in Equation (9).

�̂�𝐴𝐿 =
̂𝑃𝑝𝑟𝑒

𝐹𝑛
�̂� −

̂𝑃𝑚𝑘
𝐹𝑟

�̂� =
̂𝑃𝑝𝑟𝑒�̂�
𝐹𝑛

−
̂𝑃𝑛 ̂𝑃𝑝𝑟𝑒�̂�

̂𝑃𝑟𝐹𝑟
(9)

The decorrelation afterburner was created as a post-processing correctional step on the dif-
ference image. It is calculated in frequency space so that it decorrelates (whitens) the noise
of the difference image back in image space. We introduce the formula in Equation (10) and
discuss more details in Section 7.
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(10)

In Equations (11) to (13), we write the ZOGY score image in frequency space and expand the
expression to demonstrate that the AL matching and subtraction combined with the decor-
relation afterburner noise whitening theoretically leads to the same detection statistics.
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We start with the ZOGY score image in Equation (11) and demonstrate that the expression
is equivalent with the score calculated from a perfectly matching, decorrelated AL solution in
Equation (13). In the AL approach the role of the two images are not symmetric, the template
PSF is matched to the science image, and the science image is left intact. Assuming that the
AL optimization finds the perfect matching kernel, it should be ̂𝑃𝑛/ ̂𝑃𝑟. Indeed, considering
the score image, the difference between the AL and ZOGY images are only a factor of ̂𝑃𝑟/| ̂𝑃𝑟|.
Compared to the AL, in the ZOGY case both the difference image and its PSF carry an extra

̂𝑃𝑟/| ̂𝑃𝑟| factor that cancel from the overall expression of the score image. Indeed, as ̂𝑃𝑟 ̂𝑃𝑟/| ̂𝑃𝑟|
2 =

1 at all frequencies, we can reduce or expand this factor in the difference image and its PSF
terms without changing their resulting product, the score image.

Furthermore, note that ̂𝑃𝑟/| ̂𝑃𝑟| = 1 itself, if ̂𝑃𝑟 is real and positive at all frequencies. This is
the case if ̂𝑃𝑟 is a Gaussian PSF function. In this case 𝐷𝑍 and 𝐷𝐴𝐿+𝑑 are mathematically the
same as shown in Equation (15); expanding or reducing the fractions in frequency space by
arbitrary real, positive kernels have the corresponding operations of pre-convolution and de-
convolution in image space.

In the decorrelated AL approach, we can also apply an arbitrary Gaussian pre-convolution
kernel without changing the difference image in theory. However, calculating Equation (16) in
two separate steps, as a difference image that is decorrelated afterwards in a second step is
numerically problematic as discussed in Section 7.
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(17)

7 The decorrelation afterburner

Let’s consider the decorrelation afterburner first without the pre-convolution kernel, when
( ̂𝑃𝑝𝑟𝑒 = 1) at all frequencies) in Equation (10).
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Assuming a Gaussian matching kernel ( ̂𝑃𝑚𝑘) that converges to zero towards high frequencies,
the overall expression of ̂𝐾 in Equation (10) converges to 𝐹𝑛/𝜎𝑛. The decorrelation correction
function in frequency space is similar to ̂𝑐2 in Figure 1. In image space, its graph follows a
dirac delta plus a negative overshoot as in Figure 4. In the straightforward AL case, when we
convolve the template image, we don’t expect any complication in calculating such a decor-
relation correction. As 𝜎𝑟 ≪ 𝜎𝑛, Equation (10) can keep its convergence properties even if ̂𝑃𝑚𝑘
values are noisy in their Gaussian tails.

Now let’s consider the swapped image case, when we convolve the science image. The nu-
merical stability of this case is less certain. As 𝜎𝑟 ≫ 𝜎𝑛 in this case, it can prevent 𝜎2

𝑛 /𝐹 2
𝑛 from

becoming the dominant term in the denominator of Equation (10) and the numerical noise in
the tails of ̂𝑃𝑚𝑘 may remain in the high frequency values ̂𝐾 .

Let’s assume now a Gaussian pre-convolution kernel. It can be seen that the overall expres-
sion of ̂𝐾 becomes divergent in Equation (10) towards high frequencies. The denominator
converges to zero. Even if we don’t directly hit numerical overflows in calculating ̂𝐾 , a di-
vergent ̂𝐾 cannot be meaningfully applied. The difference image converges to zero (�̂�𝐴𝐿,
Equation (9)), so correcting the already computed difference image is similar to inverting a
multiplication operation of smaller and smaller numbers. In Equation (17), we can see that
calculating the corrected difference image (�̂�𝐴𝐿+𝑑 ) is exactly the same problem as calculating
the ZOGY difference image in Equation (4). In these expressions, both the numerators and the
denominators converge to zero which in practice result in numerical noise in the tail regions
of the input Gaussians (image PSFs, pre-convolution and matching kernels). We face the very
same numerical problems that was discussed in Section 4.

7.1 Decorrelation afterburner normalization

The classic ALmethod can be applied to images without considering their photometric scaling
factors (𝐹𝑛, 𝐹𝑟). In this case, the AL optimisation itself solves for the ratio of the photometric
scaling between the images. This scaling appears as the sum of the AL matching kernel. So
far, we’ve assumed that our AL matching kernels are normalized like image PSFs. Let’s re-
lax this assumption and separate the sum of the pre-convolution and matching kernels into
standalone factors 𝑆𝑝𝑟𝑒, 𝑆𝑚𝑘. To preserve the photometric flux, the decorrelation afterburner
correction should still be overall a convolution with a normalized correction kernel in image
space.
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Image space sum normalization can be easily ensured in the corresponding frequency space
expression. If we evaluate any convolution kernel at 0 frequency, based on Equation (31)
they should be equal to 1. We should include 𝑆𝑝𝑟𝑒, 𝑆𝑚𝑘 in the numerator scaling factor to
satisfy the normalization criterion. The normalized decorrelation afterburner can be written
as Equation (18).
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(18)

Similarly, should the PSFs be not normalized to sum 1 in the ZOGY image differencing, the
sum of the PSFs should appear in 𝐹𝐷 in the same way as a scaling factor.

7.2 A possible fusion of AL and ZOGY

To keep the advantage of AL of not assuming a prior knowledge of the image PSFs and of
ZOGY to produce a proper difference image, we propose the following algorithmic fusion of
the two approaches.

Let’s choose a Gaussian pre-convolution kernel (𝑃𝑝𝑟𝑒), so that the AL algorithm can determine
an accurate 𝑃𝑚𝑘 reliably in image space; perhaps in a spatially varying manner for the whole
image. The optimisation of the pre-convolution kernel can focus solely on the quality of the AL
matching kernel solution. The expected tradeoff here is that the wider the pre-convolution
kernel, the easier to find a Gaussian matching kernel but on the other hand, a wider pre-
convolution kernel means more noise correlation and a less accurate minimisation in the AL
algorithm. We do not need to calculate the classic AL difference image in its original Equa-
tion (9) form here.

In the next step, using Equation (17), we perform a ZOGY difference image calculation using
the ̂𝑃𝑝𝑟𝑒 and ̂𝑃𝑚𝑘 solutions from the previous step. They behave like the “image PSFs” in the
original zogy calculations. We should also apply all the precautions and numerical consid-
erations discussed earlier. As ̂𝑃𝑝𝑟𝑒 is positive and real, it should disappear completely from
the proper difference image and score image values. We note however, that the wider is 𝑃𝑝𝑟𝑒
in image space, the narrower ̂𝑃𝑝𝑟𝑒 becomes in frequency space. While multiplication with a
Gaussian functions is fully invertible theoretically, numerically such a multiplication will sup-
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press high frequency values and indirectly throws away high frequency (spatial) information
from the score image. This is different from the tails (and zero points) of the image PSFs. At
the PSF zero points the images do not carry any information, while with the pre-convolution,
we throw away information from the data. Ad absurdum, imagine that we keep only the 0th
frequency in frequency space. It’d correspond to a pre-convolution kernel of uniform values
in image space. We’d average out our whole images and would get one uniform detection
score for all pixels.

8 Conclusions

We studied the ZOGY difference image matching kernels for Gaussian input PSFs in this doc-
ument. In the theoretical calculations (Section 3), we showed that the matching kernels have
different convergence values in their tails depending whether they belong to the narrower
of wider PSF input image. In practice, using FFT, these convergence properties are not well
reproduced and the resulting image space matching kernels have oscillating patterns all over
the image (Section 4). We concluded that this noise is still acceptable if the input images fol-
low their PSF models and suppress high frequencies, however noise patterns appear in the
difference image if the PSFs deviate. This noise is extended, visually unappealing, and can
disrupt other algorithms’ performance on the difference image; however, it has little impact
on the source detection statistic.

We tested the direct Gaussian PSF generation in frequency space as a possible way to avoid
the convergence problems in our calculations. We expect that it would produce difference
images without large scale patterns for all inputs. It is a strong restriction on the PSFs, so we
also plan to look for weaker constraints in suppressing the artifacts in the difference image.
We also need to consider sampling (aliasing) details before implementation.

In Section 5 we discussed how to properly calculate the variance plane in frequency space
when we have noise whitening decorrelation operations.

In Section 6, we demonstrated that the AL method combined with the decorrelation after-
burner leads to the same detection statistic as the ZOGY method. With preconvolution, they
can theoretically lead to the very same difference image. We believe though that his approach
would meet similar practical problems as the ZOGY subtraction has. This is a possible future
topic to study.
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In Appendix A we discuss various considerations that have relevance in the actual and for
future frequency space image differencing code implementations.

Finally, the noisymatching kernels cause complications in implementing solutions in frequency
space for spatial variations of the PSF in a large image. This is also a topic we plan to study in
the future.

A Appendix

A.1 Notations

We follow the ZOGY paper symbol notations. Frequency space quantities are marked with ,̂
complex conjugation ismarked by 𝑥. Pixels of images are referred as functions (Equation (21)).
Expectation value of random variables are marked by ⟨ ⟩.

We use the terms image space and Fourier- or frequency space to refer to the discrete Fourier
transform of images. Pixels may refer to either space depending on the context.

𝑥 = {𝑥(0), 𝑥(1), ..., 𝑥(𝑛)}, 𝑥(𝑛) ∈ ℝ (19)

�̂� = {�̂�(0), �̂�(1), ..., �̂�(𝑘)}, �̂�(𝑘) ∈ ℂ (20)

(21)

A.2 Floating point values

Themachine epsilon is the smallest positive floating point valuewhere 1+𝜀 ≠ 1. This is≈ 1𝑒−16
for double precision.

The machine tiny is the smallest positive floating point value where the significand does not
start with leading zeroes but the exponent is the smallest representable. Going below this
value the floating point number looses significant digits and eventually rounds to exact zero.
About epsilon ⋅ tiny = 0.

Underflow to zero occurs around the order of the floating-point tiny value, we found, however,
that this never practically happens. In all our practical PSF transformation cases FFT values
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cannot go a few orders below the floating-point epsilon that is several orders higher than
the tiny limit. This is understandable if we consider that every pixel is a result of addition
operations, where the number of terms roughly equals to the number of pixels in the image.
As the PSFs are normalized, the zero frequency value is always 1, which approximately sets
the exponent of these floating point values.

Furthermore, we usually zero pad a small PSF image to a larger image size that creates a
window function effect in the padded image. The transformed image, therefore, have long
oscillating tails in frequency space and we found that all pixel (absolute) values remain a few
orders even above the epsilon threshold.

A.3 Complex random variables

⟨𝑍⟩ = ⟨ℜ(𝑍)⟩ + 𝑖⟨ℑ(𝑍)⟩ (22)

⟨�̄�⟩ = ⟨𝑍⟩ (23)

The variance and covariance of a complex random variable are defined as:

Var(𝑍) ∈ ℝ ≡ ⟨|𝑍 − ⟨𝑍⟩|2⟩ = ⟨|𝑍|2⟩ − |⟨𝑍⟩|2 (24)

Cov(𝑋, 𝑌 ) ≡ ⟨(𝑋 − ⟨𝑋⟩) (𝑌 − ⟨𝑌 ⟩)⟩ = ⟨𝑋 ̄𝑌 ⟩ − ⟨𝑋⟩⟨𝑌 ⟩ (25)

Cov(𝑋, 𝑋) = Var(𝑋) (26)

A.4 Discrete Fourier transformation normalization convention

There is a freedom how normalization factors are placed in the forward and inverse Fourier
transforms. This scales the individual values of frequency components compared to corre-
sponding pixel space values. Usually, we do not need to worry about these scalings as the
forward and inverse operation factors cancel out. However, certain frequency space rela-
tions change in their form if the normalization convention changes, most importantly for us,
the expression of the convolution theorem changes. The definition of DFT usually has the
following normalization convention:

�̂�(𝑘) = ℱ [𝑥](𝑘) ≡ ∑𝑛
𝑥(𝑛)𝑒−𝑖 2𝜋

𝑁 𝑘⋅𝑛 (27)
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𝑥(𝑛) = ℱ −1[�̂�](𝑛) ≡ 1
𝑁 ∑

𝑘
�̂�(𝑘)𝑒𝑖 2𝜋

𝑁 𝑛⋅𝑘 (28)

In this convention, the convolution theorem (and its dual) looks like:

ℱ [𝑥 ⊗ 𝑦] = �̂� ⋅ ̂𝑦 (29)

ℱ [𝑥 ⋅ 𝑦] = 1
𝑁 �̂� ⊗ ̂𝑦 (30)

Also:
ℱ [𝑥](0) = ∑𝑛

𝑥(𝑛) (31)

These relations change with factors of √𝑁 if the transform normalization changes. We must
be sure that the correct convention is used by numpy. This is the default as of v1.18.

A.5 Noise variance properties in frequency space

Let’s take a look at the covariance of the Fourier transform of zero expectation value pixels
The complex covariance can be written as:

⟨�̂�(𝑘)�̂�(𝑗)⟩ =
⟨

𝑁−1

∑
𝑛=0

𝑥(𝑛)𝑒−𝑖 2𝜋
𝑁 𝑘𝑛

𝑁−1

∑
𝑙=0

𝑥(𝑙)𝑒𝑖 2𝜋
𝑁 𝑗𝑙

⟩
=

𝑁−1

∑
𝑛,𝑙=0

⟨𝑥(𝑛)𝑥(𝑙)⟩ 𝑒−𝑖 2𝜋
𝑁 (𝑘𝑛−𝑗𝑙) =

𝑁−1

∑
𝑛=0

𝜎(𝑛)2𝑒−𝑖 2𝜋
𝑁 (𝑘−𝑗)

(32)

If 𝑘 = 𝑗, we get the variance at each frequency. From the last expression in Equation (32), we
can see that the variance is the same at all frequency and it is the sum of the individual pixel
variances. Considering the normalization in the forward and inverse Fourier transformation,
we can think of this as the average of the individual pixel variances, too.

This implies that using the average value of the variance plane as the variance in frequency
space is actually not an approximation but the exact value.

If 𝑘 ≠ 𝑗, but the individual pixel variances are equal, then the phase factors in Equation (32)
average out and we get that the covariance in frequency space is zero between different fre-
quencies. As a similar expression and argument can be written for the pseudo-covariance, we
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receive that any two different frequencies are uncorrelated. This is the well-known relation
that the Fourier transform of white noise is white noise. If 𝜎𝑛-s are not equal however, the
phase factors won’t average to zero. Spatial variations of pixel noise introduce correlation in
frequency space noise. The correlation in frequency space encodes the spatial distribution of
𝜎𝑛 values in image space.

We note that this is the case if we add zero padding to the image, because the zero padding
can be seen as pixels with zero sigma noise. Also, if we change the correlation between fre-
quencies by multiplying with frequency-dependent factors, this implies a spatial change of
noise in image space, following the convolution theorem.

Finally, let’s consider a white noise image that got convolved by a kernel image. From the con-
volution theorem, we get that in frequency space the variance becomes frequency-dependent,
but different frequencies remain still uncorrelated.

We summarize these noise transformation properties in Table 1, noting the duality of vari-
ances values and correlation between pixels in image and frequency spaces. Our understand-
ing is that correlated noise in image space can be decorrelated by scaling in frequency space
so that all components have the same variance. This is one of the key ideas in the ZOGY
difference image construction, that one square root of the likelihood variance weight can be
assigned to the proper difference image, so that its noise gets whitened (decorrelated). (The
other square root is part of the difference image PSF.)

The change of the spatial distribution of pixel sigmas follows the overall convolution (like 𝑐𝑛, 𝑐𝑟)
of the original uncorrelated images. If furthermore, per pixel variances are uniform across the
image, then the whitening restores uncorrelated white noise across the image.

image space frequency space
white noise white noise

different variance values in uncorrelated
pixels

same average variance at all frequencies
but correlation in noise between different
frequencies

same variance but correlated pixel noise
due to convolution operation

different variances at frequencies but noise
between frequencies are still uncorrelated

Table 1: Summary of image space and frequency space noise properties.
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A.6 The resolution of DFT space

Finite DFT transforms N pixel into N pixel in frequency space. The covered frequency range
always goes from -1/2 through zero to 1

2
1
px frequencies but the resolution depends on the

number of input pixels (Figure 14). As conservation of information, the N resulting frequen-
cies can distinguish exactly N spatial positions. The same concept is described by the inter-
pretation that finite DFT always sees the input as if it were periodic, giving the same result as
if the input were repeating in every N pixels. This also means that when wemake a frequency
space manipulation we must see not only the input image or kernel but the results as well to
be periodic back in image space.5

Fourier transform of a function s(t) (which is not shown) Transform of the periodic summation of s(t) 
aka “Fourier series coefficients”

Fourier transform of a function s(t) (which is not shown)

Transform of periodically sampled s(t) 
aka “Discrete-time Fourier transform”

Transform of both periodic sampling and periodic sum
aka “Discrete Fourier transform”

1/P

1/TS
1/T 

(f)

S(f)

S
N 

(k)

S(k)
s(t)  S(f)

Fourier

FFT

Figure 14: Overviewof sampling and periodicity effects in frequency space. Given the Fourier
transform of a function (top left), sampling it every T time may cause a change in the fre-
quency space values according to the sampling theorem (bottom left). This is called aliasing,
in the bottom left panel, theminimum value shown is different from the top left panel. If the
function is periodic, the frequency space values reduced to discrete values as well (top right).
DFT/FFT combines the two concepts (bottom right). Considering unit pixel size, the FFT space
always goes to 1/2 frequency with a resolution of 1/N. Figure source: Wikipedia:Discrete
Fourier transform

5Figure 14 source: https://en.wikipedia.org/wiki/File:Fourier_transform,_Fourier_series,_DTFT,_DFT.svg
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A.7 Zero padding in FFT frequency space

While in image space convolution operations can have their own way of handling edges, in
Fourier space, multiplication always corresponds to the circular boundary conditions in im-
age space. If we want to implement a convolution without circular boundary conditions that
we want to calculate in frequency space, we need to pad the images by extra edge pixels to
avoid the reappearance of values from the opposite side. As we saw in Section 4.3, numeri-
cal artifacts in the matching kernels cannot be bounded well in image space, they fill the full
area independently of the padding size. Therefore we cannot practically perform the kernel
matching convolutions in image space.

In the previous section, we also saw that a zero-padding violates one of the ZOGY assump-
tions: that frequencies are independent and log likelihoods can be calculated from them by
simple addition. Is this a significant inaccuracy in the score image?

Let’s assume for a moment that the image background is extended in a sourceless way with
white noise. In this case, all the assumptions of the detection statistics derivation hold thus
we get Equation (6). This is a usual convolution expression in image space and at any pixel
its value depends only from the half 𝑃𝑑 size neighboring area. If 𝑃𝑑 significant values are
located in about the same square size as the original PSF size then the affected edge area
also remains the same. If the PSF contains edges, however, 𝑃𝑑 can be significantly bigger in
size. Zero padding adds pixels to an image that, from a noise model perspective, all have a
noise variance of zero. By padding the input images with zeroes, the pixel variance of the
difference image and, in a smaller edge region, the score image variance will decrease. It
is unclear whether scaling the score image 𝑆 with its variance plane satisfactorily corrects
for this effect. Nevertheless, this correction term is listed as a suggested rescaling of the
score image in the ZOGY paper Section 3.3. Beside this correctional approach, we propose
the implementation of padding with the model white noise instead of constant zeroes in the
future.

A.8 Sampling

It can be shown that Gaussians with 0.95 < 𝜎, are well sampled in the sense that 3𝜎 of their
Fourier transform Gaussian fit up to the 1/2 frequency limit. For 5𝜎 fit, this is 1.59 < 𝜎.
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1D One-dimensional
2D Two-dimensional
DM Data Management
DMTN DM Technical Note
FFT Fast Fourier Transform
LSST Legacy Survey of Space and Time (formerly Large Synoptic Survey Tele-

scope)
PSF Point Spread Function
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